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The physical properties of lava flows have been studied through field observations as well as
through analytical and numerical modeling.  Theoretical models of lava flow emplacement attempt
to understand how the complex interaction between a flow’s physical properties and emplacement
characteristics lead to the final flow dimensions and morphology observed in the field.  A flow’s
effusion rate, rheologic parameters, and the underlying topography all play an important role in
determining morphologic parameters such as length or surface structure.  Therefore, understanding
how a flow dynamically interacts with its environment and develops characteristic dimensions and
surface features can provide important constraints on its emplacement history.

This analysis is a theoretical examination of the role of pre-existing topography on lava flow
emplacement.  Specifically, the effects of small- and intermediate-scale underlying topography on
the dynamics of the flow are examined.  A small-perturbation analysis is used to determine an
approximate analytical solution for flow of lava down a rough inclined plane in which the
amplitude of the plate undulations are small relative to the depth of the flow. We start with the
simple case of a single harmonic component on an inclined plane.  This analysis is expanded to
examine viscous flow down a more natural surface, represented by topographic profiles of
Hawaiian basalts. We next examine the cumulative influence of pre-existing topography at
intermediate scales.  Specifically, we determine how a flow down an inclined plane reacts to
periodic or random slope changes, and the effects on the resulting planform of the flow.

Small-Scale Topographic Effects.   We examine a first-order solution of a lava flow,
modeled as a viscous liquid, flowing down an underlying rough surface represented as a two-
dimensional corrugated shape with the corrugations running parallel to the y-axis (crossflow) [1].
We solve the Navier-Stokes equations for a viscous, incompressible fluid subject to a gravity force
and focus on flow in two dimensions (x and z).  We start with a plane with a superimposed wave
of a known amplitude and frequency, then extrapolate this approach to an even more realistic
surface by combining multiple harmonic components.  As a first order approximation, we consider
the flow near the vent which is at such high temperatures that a Newtonian approximation is valid,
that is shear stress is linearly proportional to the rate of deformation.

The first-order approximation for the upper flow surface due to one underlying harmonic
component is expressed as:

    g1 = Ce i λ x
   (1)

which is a complex number with both an amplitude and a phase component, where C is a function
of the topographic wavelength and the slope of the ground.

Multiple Harmonic Solution. Next we wish to address a flow’s sensitivity to changes in the
underlying surface roughness at a range of scales.  Of primary interest is the critical scale at which
the flow is deep enough, relative to the topography, such that details in this topography are not
significant to the overall flow emplacement.  Superposing multiple harmonics on the mean slope
can be used to represent a more natural surface, composed of topographic irregularities of varying
wavelengths.  We use as our baseline topographic profiles collected on several Kilauea basalt
flows [2] which span a wide range of surface roughness, from smooth pahoehoe flows to jagged
a’a deposits. For the smoothest and roughest surfaces measured, we calculated the Fourier
transform of the profile and applied the above model for a range of flow depths.

Results.   From this analysis we find that if a flow is very thin, the ground slope is large, or the
wavelength of the plate roughness is very long, the upper surface of the flow closely mimics the
lower surface shape. As the flow thickens, the plate wavelength decreases, or the average
topographic slope decreases, the amplitude of the upper surface undulations decrease. The lava
flow acts as a low-pass filter for the underlying surface roughness, such that high-frequency
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changes in the ground are smoothed in the final flow shape. Tradeoffs between the mean ground
slope and surface roughness are explored to determine at what scale (relative to the flow depth)
these effects begin to significantly influence flow emplacement. We find that the flow on steeper
slopes appears to mimic the underlying topography better than flow over shallower slopes.  We
also find that the phase shift is small for short-wavelength perturbations.  As the slope increases,
the maximum phase shift at any given wavelength decreases.  The phase shift is greatest for long
wavelengths and small slopes, however, the amplitude of the surface displacement at this range
would be extremely small and thus would not likely be readily discernible.

Intermediate Scale Topographic Effects.   We next examine the influence of pre-existing
topography on internal flow dynamics at an intermediate scale.  One approach is to determine the
cumulative effects of slope changes and different types of systematic and random topographic
variations downflow on the flow width and depth. Again we assume a steady, incompressible, low
Reynolds number, Newtonian flow. We model the downflow changes in depth and width for an
unconfined flow on an inclined plane, assuming conservation of volume after [3]. A volumetric
flow rate expression, common to many forms of geologic mass movements, is used [4]:
    q = α(x)hm (2)
where α is a function of the slope, horizontal dimension (x), and rheologic properties; h is the flow
depth, and m is an empirical constant which describes the rheology of the fluid.  For a Newtonian
fluid with a constant viscosity, m = 3 and α(x) = αo = gsin θ/3ν.

If the x-axis is downstream, and the y-axis is crossflow we have:
  q crossflow =– g α(x) hmcos θ∂h

∂y , (pressure driven)
(3)

  
qdownflow = –g α(x) hm cos θ ∂h

∂y +sin θ , (pressure and gravity driven)
(4)

The general solutions for h (x,y) and w (x) have several interesting properties which differ from
solutions for steady-state lava flow shape.  The primary feature is that the width of the flow (in the
y-axis) is related to the integrated effects of slope along the entire travel path between the source
and a point x.  This makes physical sense in that a lava flow does not instantaneously react to slope
changes; widening or narrowing occurs at a finite flow rate.  We use this model to examine the
effects of downflow slope changes on the width and depth of the lava flow, and the resultant
margin shape which is produced. In practice, this is accomplished by deriving a moving average of
the local cot θ terms along the entire path up to a given x-location.

Results.   In order to separate the downflow effect due to changes in a fluid’s rheologic properties
(such as viscosity) from effects due to pre-existing topography, we start by keeping the slope α
constant and examining tradeoffs between flow depth and width over various forms of
topography.  In each case we examined a baseline solution of a flow over a smooth inclined plane,
then considered the effects of adding topographic roughness.  This roughness is represented by a
synthetic surface of fractal dimension 1.5 (Brownian noise) [2], and we increase the rms slope (the
standard deviation of slopes measured between adjacent profile points) to examine roughness of
progressively higher amplitude. At these scales we see that increasing the tilt of the mean surface
has some effect on the downflow width, but flow over topography with random changes in local
slope has no significant effect on the flow shape, even for steep slopes.  However, systematic or
periodic topography does have a significant effect on downflow width causing the flow to widen
significantly with distance from the vent, relative to the smooth plane case, and marginal step
increases to occur.
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